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1. Introduction 

1.1. Background 

In today’s world, it is not uncommon to hear of tragic accidents, such as collapsed 
buildings, that leave humans stranded. These accidents often make the 
environment too dangerous for other humans to stage a rescue attempt. This could 
be due to unstable infrastructure, harmful chemicals in the air, and other life-
threatening conditions. In these scenarios, it would be extremely helpful to look 
toward an alternative source of rescue: robots. If a robot could successfully enter 
the dangerous environment, rescue or provide aid to those stranded, and return to 
where it was deployed, no other human lives would be risked, and many victims 
could be saved. The RoboCup Junior intends to target this goal with its maze 
competition. 

1.2. The Task 

In the RoboCup Junior maze competition, a robot must autonomously navigate 
through a maze composed of floors separated by ramps. Each floor is composed 
of uniform square tiles. The robot is tasked with detecting “visual victims” 
represented by the letters “H”, “S”, and “U”, which are scattered throughout the 
maze, so the robot should navigate through every tile in the maze rather than 
finding a single path through the maze. In this paper, we discuss an algorithm to 
efficiently navigate every tile of this multidimensional maze as well as two 
approaches for fast visual victim detection.  

2. The Algorithm 

2.1. Defining the Maze  

The program must store attributes of each tile including the location of the four 
walls. To conserve memory, each tile is defined as a byte while each attribute of 
the tile is defined as a bit - the first 4 bits correspond to whether there is a north, 
west, south, or east wall respectively. The maze is stored as a one-dimensional 
array where a specific tile with coordinates (x,y) on floor z corresponds to the 
index z * length of array * width of array + y * width of array + x.  
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2.2. Section and Orientation 

Our robot begins its journey at the center of our map facing in an arbitrary 
direction. It begins in the middle of the maze so that it can expand in any direction 
without having to be predefined. We have one variable to keep track which tile 
we are in and what direction we are facing, and both are updated every time we 
turn or move between tiles. 

2.3. Single Floor Navigation 

2.3.1. Traversal 

Our robot begins in a simple traversal algorithm. It moves around the 
maze with a priority in moving forward as we want to minimize turns to 
save time and avoid turning errors. Once it cannot move forward, it tries to 
turn right, then left. It is programmed not to move into already visited tiles 
to save time and avoid redundancy. However, if the robot has no option of 
moving into an unvisited tile, a dead end has been reached. 

2.3.2. Dead End 

When a dead end is reached, the robot must consult a more complicated 
algorithm. We want our robot to find the path to the closest unvisited tile 
to avoid unnecessarily long paths throughout the maze. To do so, we used 
a Breadth First Search algorithm. We treated each tile of the maze as a 
node in a tree, where a parent’s children would be a tile’s adjacent nodes 
and a goal node would be any unvisited tile. Our Breadth First Search 
would then return the shortest path to the closest unvisited tile, and our 
robot would traverse accordingly. 

2.4. Multiple Floor Navigation 

2.4.1. Map Storage 

When our robot reaches a different floor, it must also store that floor’s 
data in the map to successfully navigate the floor. However, if the second 
floor is simply treated as an extension of the first floor, it is likely that 
information from the first floor will be overwritten if the second floor 
overlaps the first floor. To compensate for this, we added multiple floors 
to the map, where a sections whose indices vary by exactly one floor 
correspond to tiles that are directly above/below each other on the maze. 
This way, the robot could once again traverse in any direction and never 
overlap with the first floor. 
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2.4.2. Section Count and Ramp 

If there are multiple paths to arrive at a floor, we have to keep our section 
count accurate. This is so that if we land back on a certain floor, we know 
we are back to that floor and not a different one. To do so, the section 
difference between each floor is exactly one full field and the length of the 
ramp. The difference of a full field ensures that the two separate floors 
will not overlap in our map, and accounting for the ramp length ensures 
that if two ramps are of different length, our robot will change our section 
count accurately.  

2.4.3. Jumps 

Additional ramp tiles are added to the end of the maze array to function as 
a corridor. We added an attribute, a “jump”, which indicates that the 
current tile can lead to a corridor, separate from the rest of the maze. This 
corridor represents a ramp. At the end of each corridor, the last tile also 
has a “jump” attribute which signals that the tile connects to the first tile of 
the next floor. Accounting for the length of the ramp through the number 
of tiles in the corridor allows the Breadth First Search algorithm to 
correctly determine the shortest path to the next tile. A dictionary between 
tile indices is used to set up jumps between tiles. 

2.4.3.1. As an extension of the algorithm to make the algorithm function in 
the case of multiple ramps leading to a single tile, this dictionary 
should also keep track of the direction of the jump. 

2.5. Navigating Back to the Start 

2.5.1. One Floor  

After our robot finishes with the maze or we begin to run out of time, we 
want to return to the beginning. To do so, we rely, once again, on our 
Breadth First Search. Our Breadth First Search, however, works a little bit 
differently in this scenario. It only treats adjacent tiles that have already 
been visited as children to a parent node. This is because we are unsure of 
the wall situation in unvisited tiles, which could lead to path calculation 
problems. When returning back to the start, our only goal node is the 
starting tile, and the Breadth First Search will return the shortest path to 
the start. 

2.5.1.1. As the algorithm provides the exact number of tiles that need to be 
navigated to return to the start, the algorithm can also approximate 
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the time it takes to return to the start. This is practical for the 
competition where there is a timed run. 

2.5.2. Separate Floor   

In the event that our robot is on a different floor than it started in, it must 
find its way to a ramp to lead it back to the beginning floor. Once again, 
we run our Breadth First Search, but this time, it utilizes the jump attribute 
of each tile. If the algorithm hits a tile with a jump attribute, we consult 
our C++ map, which will indicate a jump from the current tile to the 
beginning of the ramp, and that tile is used as a child node to a parent 
node. The tile at the end of the ramp also has a jump attribute, which has a 
jump attribute to the next floor. As a result, our Breadth First Search can 
reach different floors and still find the shortest path. 

2.6. Unvisitable Tiles 

Occasionally, some tiles have four walls surrounding it, and are thus unreachable. 
Our program is designed to navigate every tile of the maze until it attempts to 
return to the start. However, to compensate for unvisitable tiles, we consulted our 
Breadth First Search again. If and only if our Breadth First Search cannot find an 
unvisited tile to go to, then we will return to the start. 

2.7. Alternative Algorithms 

A different approach we could have taken would be to redesign our map. Our 
current map is an array that uses more memory than necessary to avoid presetting 
the dimensions of the maze and the starting tile (the robot currently starts at the 
center of an extremely large maze so that it can move many tiles in any direction). 
An alternative would be to create a structure for each node and have pointers to 
each of its adjacent nodes. This would allow us to allocate exactly the number of 
tiles we needed, because a new structure would just be allocated for every new 
tile we traverse to. This would also allow us to have as many attributes of 
whatever type we want, instead of being limited to 8 bits. However, this would 
not work in a scenario where there are multiple paths to a floor: when the robot 
returns to its original floor through the use of a different ramp after navigating 
through the other three floors, it will treat the original floor as a new floor (Fig 1). 
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Fig. 1. Maze with 4 floors. 

3. Visual Victims 

3.1. Hardware  

We are using a StereoPi, which allows us to attach two pi cams to the robot. We 
are using the Waveshare RPi Camera (G) as its fisheye lens maximizes the field 
of view of the cameras.   

3.2. Finding Potential Contours of Interest  

To find the letters within an image, the image is first thresholded. The threshold is 
determined by taking the average of the darkest 5% of pixels when the camera 
was facing a white wall, and this value is averaged with the darkest 5% of pixels 
when the camera faces a letter. The algorithm then uses the OpenCV 
findContours function to find potential letters in the image.  

3.2.1. Avoiding False Detection  

Contours that touch the edge of the image are disregarded: these contours 
either represent noise from the maze, such as walls in different tiles of the 
maze or letters that have been cut off, in which case the algorithm is likely 
to incorrectly classify the letter as an “H”, “S”, or “U”. Contours must 
meet a specific area requirement, and the height to width ratio of the 
minimum enclosing rectangle (a rotated rectangle) must also be between 
specific values.  

3.3. Extracting Regions of Interest 
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As letters could be tilted at any angle or even upside down, a rotation needed to 
be applied before determining the correct letter. After this step, the letter is either 
upside right or rotated 180° (upside down). The next step of the algorithm can 
account for both these situations.  

3.3.1. Rotations and Cropping  

The algorithm bounds the contours of interest through the use of the 
OpenCV minAreaRect function, which provides a rotated rectangle 
representing the desired region of interest. A rotation matrix is created 
based on the angle and center of the rotated rectangle. In the case that 
applying a rotation on the frame based on the angle of the rotated 
rectangle would result in a frame whose height is less than its width (a 
sideways letter), 90° is added to the angle of the rotated rectangle prior to 
creating the rotation matrix. This ensures the letters will not be sideways. 
The rotation matrix is then applied to the frame using the OpenCV 
warpAffine function. Rotating the points of the rotated rectangle by the 
same rotation matrix provides the points for the bounding rectangle of the 
newly rotated contour. The image is then cropped based on this bounding 
rectangle. 

3.3.2. Limitations 

If the letter’s width appears greater than the letter’s height in the image 
either due to a distorted image or physically distorted letters, the algorithm 
may detect the wrong letter, although it is more likely to fail to detect the 
letter altogether. To fix this issue, it is necessary to extend the solutions to 
determine the correct letter detailed below such that they are also 
applicable for sideways letters. 
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Fig. 2. a) Grayscale image captured from the picam. b) Thresholded image. c) Rotated image.    
d) Cropped image.  

3.4. Determining the Correct Letter 

Two potential methods were examined to determine the correct letter, both which 
involve dividing the image into regions. As an “H” and “S” appear the same once 
rotated 180°, the only upside down letter that the algorithm needs to account for 
in a separate case is an upside down “U”. 

3.4.1. Using Contours 

This method involves looking at sections of the frame and counting the 
number of contours in each section. To avoid very small regions created 
by noise from being counted as a contour, only contours that are larger 
than one-fourth of the largest contour in the section are counted. The 
algorithm first examines the left half and right half of the frame. If both 
the left half and right half of the frame have two contours, the letter must 
be an S (Fig. 3). In order to differentiate between a “U” and an “H”, the 
algorithm then counts the number of contours in the top third and bottom 
third of the image. If there are two contours in both these regions, the 
letter must be an “H” (Fig. 4). Otherwise, the letter is a “U”. 
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Fig. 3. Note that a “U” and an “H” has one contour on each side while the “S” has two contours 
on either side.   

 

Fig. 4. Note that an “H” always has two contours in the top third and bottom third of the image 
while the “U” has one contour in either the top third or bottom third of the image 

3.4.2. Finding the “fill” of the image This method looks at the percentage of 
black pixels in specific regions of the image rather than counting the 
contours in each region. The rightmost and leftmost fifth of the image for 
an “H” and a “U” have a much higher percentage of black pixels 
compared to an “S” (Fig. 5). The algorithm then differentiates between an 
“H” and a “U” by examining the middle region: the “H” has a higher 
percentage of black pixels than the “U” in this section (Fig. 6). In some 
fonts, the bridge for the “H” can be fairly narrow which can make it 
difficult to differentiate between the “U” and “H”, so more calibration is 
required. Warped letters due to the fisheye lens being used can lower the 
fill of the rightmost and leftmost fifth of the image for the letters “H” and 
“U”, so this could also be problematic. For this reason, the contours 
method for differentiating between letters is preferable.  
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Fig. 5. The letters “H” and “U” have an 80-100% fill on the rightmost fifth and the leftmost fifth 

of the image while these sections have under a 60% fill for the letter “S”. 

 

Fig. 6. The letter “H” has a much higher “fill” in the middle section of the image relative to the 
letter “U”. 

4. Conclusion 

We have discussed algorithms to solve two challenges presented in the RoboCup Junior 
Maze. One algorithm allows for successful complete navigation of a multi-floor maze 
while maintaining a map to allow for calculating the fastest path back to the start of the 
maze. The second part of the paper discusses an algorithm with two variations for quick 
letter recognition using solely the OpenCV library. Future improvements can be made for 
both algorithms: the memory required for the navigation algorithm can be reduced by 
only allocating bytes to tiles that exist, and the letter detection algorithm can be modified 
to account for more cases of camera distortions and distorted letters. We hope to 
implement some of these improvements in the future.  


